
CMM-2005 – Computer Methods in Mechanics June 21-24, 2005, Częstochowa, Poland

A block sparse direct multifrontal solver in SCAD software

Sergiy Yu. Fialko
Kiev National University of Construction and Architecture

Povitroflotski av., 31, 03-037 Kiev, Ukraine
e-mail: sfialko@poczta.onet.pl

Abstract

The sparse direct multifrontal solver with block factoring in frontal matrix is presented. The nodal reordering instead of widespread
finite element one, possibility to work with arbitrary reordering method and block factoring procedure in dense frontal matrix are
discussed. The numerous examples from computational practice of Software Company SCAD Soft (www.scadsoft.com) illustrate the
high efficiency of proposed method.

Keywords: finite element method, multifrontal solver, block factoring, reordering

1. Introduction

The sparse direct solvers are widely applied in modern
finite element (FE) software for analysis of many kinds of
problems. When the size of finite element problem is not too
big (it is about 100 000 – 1 000 000 equations for PC
computers), the sparse direct solvers lead to fast solution. They
possess a low sensitivity to ill-conditioning, allows one to
recognize the geometrical instability of computational model
and the analysis time practically does not depend on number of
right-hand sides, if one is not too big. So, sparse direct solvers
are a powerful tool for practical analysis of structural mechanic
problems.

This paper is devoted to further development of sparse
direct multifrontal solver [5], which has been applied in Robot
Millennium (www.robobat.com) and SCAD
(www.scadsoft.com) software. The presented here
improvements cover the more efficient reordering method and
block mode of TLSL factoring of dense frontal matrix instead
of previously applied non-block LU decomposition.

2. Sparse direct multifrontal solver

The reordering methods lead to reduction of fill-in, which
arises during factoring of stiffness matrix. So, efficiency of
direct methods essentially depends on ability of chosen
reordering strategy to reduce fill-in. The widespread fill-in
reduction technique for today is a minimum degree algorithm
family and nested dissection technique [1], [6], [7]. The
evolution of reordering algorithms happened into following
directions: improving of minimum degree method [7],
integration of advantages both: the minimum degree methods
and the nested dissection ones [1] and creation of high-efficient
multilevel approaches for incomplete nested dissection
technique [8], [9].

Second way to enlarge the performance of computations is
the application of block technique to factoring procedure. Such
a blocking of operations allows one to reduce the low-speed
transitions of data between RAM – CPU due to efficient usage
of cache memory [2].

The presented here block sparse direct multifrontal solver
combines these advantages.

Key features of the proposed method are follows:

• The node-by-node elimination process instead of element-
by-element one is used. That’s mean an elimination of all
equations, associated with current node.

• The nodal reordering procedure is applied instead of
element reordering one.

• A front is a C++ class object which encapsulates all data
related to a particular node of a FE model. The number of
fronts is the same as the number of nodes and the number
of elimination steps. Each front contains the elimination
node number, the list of frontal nodes, the list of previous
fronts (that is, the number of fronts which comprise the
given front) and the list of assembled finite elements.

• The elimination process is possible to consider like a
movement along the frontal tree.

The solution process consists of following steps.

2.1. Reordering stage

Solver takes the permutation array Perm, which assigns the
nodal ordering, obtained due to taken reordering method to
reduce the fill-ins. The reverse Cuthill-McKee algorithm [6],
Sloan method [3], [10], nested dissection method (NDM) [6],
minimum multiple degrees method (MMD) [7], parallel section
method (PSM_MMD), improved by using of MMD method [7]
for each sub-domain, factor-trees method (FQT), multilevel
nested dissection method with local MMD reordering
(MND_MMD) (idea of this method is taken from [1] and is
very close to [8], [9]) are developed in reordering module.

Moreover, the automatic mode is developed to search the
proper reordering method among MMD, MND_MMD,
PSM_MMD and Sloan methods. This search is based on fast
symbolic factorization algorithm [6]. The adjacency graph for
finite element nodes is applied instead of equation graph to
accelerate the search of proper reordering method.

So, reordering module permits one to select one from
mentioned above method or assigns the automatic choice.

2.2. Estimation stage

The permutation array Perm sets the order of node-by-node
factoring. All equations, associated with given node, are
factored on the same frontal step. We set the order of finite
element assembling to ensure of given nodal ordering [5]. The
symbolic frontal process creates the structure of level for frontal
tree and so-called data structure “Process Descriptor” (PD).
Only one node (all associated with it equations) is fully
assembled and is ready for factoring procedure on each frontal
step. The PD data structure contains the list of nodes for each

CMM-2005 – Computer Methods in Mechanics June 21-24, 2005, Częstochowa, Poland

front, list of previous fronts and list of finite elements, which
must be assembled on current frontal step.

We tell the difference between successive, start and nodal
fronts. The start front has no any predecessors (previous fronts).
The successive front has only single predecessor, and nodal
front has several predecessors.

The factorization process is performed in frontal matrix –
dense matrix, consisted of fully assembled equations, i.e.
equations, associated of corresponding node on given frontal
step, and incomplete part. We reorder of fronts to reduce the
number of incomplete fronts. The appropriate reordering
algorithm is developed for it.

The estimation of required RAM and HD (hard disk) space
is produced.

2.3. Factorization stage

Factorization stage consists of node-by-node procedure,
which covers all nodes of finite element model. On other hand,
factorization process is possible to consider as a movement
along structure of levels of frontal tree.

When start or nodal fronts are met, the memory allocation
routine reserves the memory space for frontal matrix. The
special algorithm look over frontal steps till the next nodal front
will meet. The size of frontal matrix is taken to avoid
reallocation procedure due to assembling of appropriate finite
elements on successive part of frontal tree.

The frontal matrix of nodal front is assembled from frontal
matrices of previous incomplete fronts and matrices of finite
elements, assembled on this step. As soon a frontal matrix of
previous incomplete front is taken for assembling, as
corresponding memory space de-allocates. It allows one to
ensure the respectively small requirements to RAM.

The frontal matrix of successive front takes the pointer of
frontal matrix of previous front. This allows us to avoid the
waste transfer of data and allocation – de-allocation procedures.

So, each step of factorization is produced in frontal matrix,
consisted of fully assembled equations and incomplete part [5].

2.4. Operations in frontal matrix

The Gauss elimination procedure is applied to partial
factorization of frontal matrix in early versions of presented
sparse direct multifrontal solver [5]. The main disadvantage of
this approach is a low performance of Gauss elimination in
frontal matrix. The block Cholesky factorization algorithm is
developed instead of column-by-column Gauss elimination one
and is presented in proposed paper.

The cluster of equations is associated with each node. So,
the several equations are fully assembling simultaneously on
each step of frontal process. It allows us to apply the block
factoring approach, where size of block equals to the number of
equations in cluster. Size of fully assembled block equals to the
number of degrees of freedom in node. So, the size of fully
assembled block usually equal 6 for 3-D finite element model,
for spatial trusses and solids – 3, and so on. Such an
argumentation is fairly for unconstrained nodes. If some degrees
of freedom in given node is constrained, the number of fully
assembled equations is less than it was presented above. It leads
to slight decreasing of computational performance, but not
destroy of general idea of block factorization.

First of all let us consider the situation, when fully
assembled equations are located at the beginning of matrix
(Fig. 1). Such an example is considered only to illustrate the
principal peculiarities of block Cholesky factorization.

The partial block factorization is possible to be presented as
a follows:

⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

I
WL

I
S

MW
L

MMW
WD L

0

~

0
0

~
0 TTT

 (1)

Fig. 1. Permutated frontal matrix

• Factorize diagonal block TLSLD L ⋅⋅= (1), where LS is

a sign diagonal. The column-by-column Cholesky
algorithm is applied here. Size of diagonal block does not
exceed the 6. It is a small matrix, which is possible to
allocate fully in cache memory. So, the order of loops in
program code does not play of important role.

• Update column W :

TT

T

WYWS

YWYL

L
~~

⇒=

⇒=⋅
 (2)

The number of right hand sides of (2) is 3 or 6, if 3-D
problem is considered. So, the block resolution mode is applied
to ensure the level of BLAS-III (Basis Linear Algebra System)
[2].
• Update sub-matrix MM :

TWSWMMM L
~~

⋅⋅−= (3)

The LS is a diagonal matrix and is stored in core as a
vector. So, matrix operation (3) is similar to well-known one

TAACC ⋅−= . The block matrix product is applied to ensure
the level III of BLAS [2].

Fig. 2. Block factoring of stiffness matrix

CMM-2005 – Computer Methods in Mechanics June 21-24, 2005, Częstochowa, Poland

The previous version of sparse direct multifrontal solver [5]
realises the non-block mode. If the size of block is taken as 1,
the presented above algorithm achieves only level II of BLAS.
It is clear, that the previous version of solver [5] corresponds in
the best case only to level II of BLAS. This fact explains the
advantages of proposed here approach.

In reality, situation is more complicated because the cluster
of fully assembled equations is placed in arbitrary part of
matrix. The typical structure of frontal matrix is presented on
Fig. 2. Theoretically, this case is possible to reduce to case,
shown on Fig. 1, by means of permutations. However, this way
leads to decreasing of computational performance due to waste
operations, caused by indirect access to data.

In proposed version of solver we do not apply any
permutations. The matrix is subdivided on 3 sectors: A, B, C.
Fully assembled part of matrix TWL ~, is stored in a special
buffer, and only we produce the steps (1), (2) only in core of
this buffer. After factorization of diagonal block and update of
sub-diagonal one this part of matrix is a fully decomposed.
When buffer is exhausted, this data are stored to secondary
storage (hard disk HD), and buffer is cleared to be ready to the
next usage. So, factored global finite element matrix is fully
reconstituted on disk only after frontal process is finished.

The incomplete part of matrix is presented by blocks A, B,
C. The update of these blocks corresponds to (3), but algorithm
is more complicated. Data of sector A remain on the same
positions, data of sector B are shifted up by number of fully
assembled equations n (e.g. by width of block) and data of
sector C are shifted up and left by n positions. So, at the end of
current frontal step the frontal matrix comprises only
incomplete part. Dimension of it is nN − , where N –
dimension of frontal matrix before factoring step and n is a
number of equations in fully assembling cluster (block).

Then we pass to the next frontal step.

3. Examples

3.1. Multi-storey building

The finite element model of multi-storey building (Fig. 3)
comprises 195 585 nodes and 204 067 finite elements
(1 171 104 equations). The computation time for different
modes and ability of multi-frontal solver to reduce non-zero
entries in matrix is presented in Tab. 1.

The non-block mode means, that factorization procedure in
frontal matrix consists of equation-by-equation (non-block
routine) factoring. In this case the performance of computations
is slow, because the waste cache – core transition of data
presents.

The block mode realises the presented above block
factorization in frontal matrix.

Fig. 3. Multistorey building

Column 1 presents the performance of sparse direct
multifrontal solver [5], when non-block mode and QMD/NDM
reordering [6] is applied. Column 2 illustrates the efficiency of
improved reordering technique – MMD or multilevel nested
dissection reordering [7], [8], [9]. Column 3 shows the
acceleration of computations due to both: improved reordering
and block mode of factoring. All computations have been
produced on PC computer Pentium III (1024 MB RAM, 1.2
GHz CPU).

Table 1. Comparison of computation time and non-zero

entries
 Non-block

mode.
QMD [6]
reordering

Non-block
mode.
Multilevel
nested
dissection
reordering [8]

Block mode.
Multilevel
nested
dissection
reordering [8]

Column 1 2 3
Time 5 h 44 m 3 h 29 m 1 h 08 m
Non-zero
entries, MB

3 246 2 694 2 694

3.2. Ribbed cylindrical shell with discrete-point connections.

The thin cylindrical shell with circular thin-walled ribs is
considered (Fig. 4). The contact between shell and rib is
produced only in discrete points. Such a model simulates a
point-wise welding. It is necessary to create a dense mesh to
ensure a good approximation of bending moments and
membrane forces in contact zone.

Fig. 4. Ribbed shell with discrete welded connection. a –

computational model with fine mesh, b –model with a coarse
mesh

The finite element model (fine mesh) comprises 304 200

nodes and 300 300 finite elements (1 819 800 equations). A
coarse mesh is presented to clearly illustrate the computation
model, because a too dense fine mesh does not provide a good
understanding of model on figure.

All computations have been produced on PC computer
Pentium III (1024 MB RAM, 1.2 GHz CPU). The results are
presented in Tab. 2.

The nested dissection reordering method [6] for non-block
mode is a more preferable for this problem than QMD one. The
most preferable is a multilevel nested dissection reordering [8].
The block mode and proper reordering method allows us to
reduce the computation time almost in 3 times comparing with
old version of solver [5].

CMM-2005 – Computer Methods in Mechanics June 21-24, 2005, Częstochowa, Poland

Table 2. Comparison of computation time and non-zero
entries

 Non-block

mode.
NDM [6]
reordering

Non-block
mode.
Multilevel
nested
dissection
reordering [8]

Block mode.
Multilevel
nested
dissection
reordering [8]

Column 1 2 3
Time 9 h 51 m 6 h 40 m 3 h 46 m
Non-zero
entries, MB

5 216 4 441 4 441

3.3. Structure – soil interaction problem.

Usually such a problem (Fig. 5) gives rise a stiffness matrix,
which is very hard to be optimized to reduce fill-ins for
application of direct methods [4]. The finite element model
contains 104 048 nodes, 111 269 finite elements and 319 133
equations. A non-uniform mesh on the soil is denser in the
building foundation area.

Fig. 5 Structure – soil interaction problem

The previous version of sparse direct multi-frontal solver

(the nested dissection reordering method), based on non-block
mode of Gauss elimination in frontal matrix, requires about
1292 MB RAM only for allocation of the maximal front (18 403
equations) which is more than the available storage on our
computer (PC Pentium-III, CPU Intel-1266 MHz, 1024 MB
RAM). The size of non-zero entries in stiffness matrix is 7 869
MB (Tab. 3).

The block version of multifrontal solver, using the
multilevel nested dissection reordering, allows one to reduce
both: the size of maximal front to 306 MB and the size of non-
zero entries to 3 189 MB. It is approximately in three times less
comparing with nested dissection reordering method [6]. As a
result, this problem has been successfully solved on given

computer. The block mode allows us to reduce the computation
time almost in two times comparing with non-block Gauss
elimination one.

Table 3. Comparison of computation time and non-zero

entries

 Non-block
mode.
NDM [6]
reordering

Non-block
mode.
Multilevel
nested
dissection
reordering [8]

Block mode.
Multilevel
nested
dissection
reordering [8]

Column 1 2 3
Time — 10 h 16 m 5 h 51 m
Non-zero
entries, MB

7 869 3 189 3 189

4. Conclusions

The advanced reordering method together with block
Cholesky factoring mode of frontal matrix essentially improves
the performance of multifrontal solver, presented in [5]. It
allows us to apply this method to analysis of very wide range of
structural mechanics problems from practice of software
company SCAD Soft (www.scadsoft.com).

References

[1] Ashcraft, C. and Liu, J. W.-H., Robust Ordering of Sparse
Matrices Using Multisection, Technical Report CS 96-01,
Department of Computer Science, York University,
Ontario, Canada, 1996.

[2] Demmel J. W., Applied Numerical Linear Algebra,
SIAM, Philadellphia, 1997, Russian edition, Moscow,
Mir, 2001.

[3] Duff, I.S., Reid, J.K., Scott, J.A. The use of profile
reduction algorithms with a frontal code. Int. J. Numer.
Meth. Eng, 28, 2555—2568 (1989).

[4] Fialko, S.Yu., An aggregation multilevel iterative solver
with shift acceleration for eigenvalue analysis of large-
scale structures. Proceedings of the CMM-2003 –
Computer Methods in Mechanics June 3-6, 2003, Gliwice,
Poland. pp. 125 – 126., June 3-6, 2003

[5] Fialko, S.Yu., Kriksunov, E.Z. and Karpilovskyy V.S., A
sparse direct multi-frontal solver in SCAD software,
Proceedings of the CMM-2003 – Computer Methods in
Mechanics, Gliwice, Poland. pp. 131 – 132., June 3-6,
2003

[6] George, A. and Liu, J. W.-H., Computer Solution of Large
Sparse Positive Definite Systems, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1981.

[7] George, A. and Liu, J. W.-H., The Evolution of the
Minimum Degree Ordering Algorithm, SIAM Rev. 31, 1-
19 (March 1989).

[8] Karypis G., and Kumar V., A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs,
Technical Report TR 95-035, Department of Computer
Science, University of Minnesota, Minneapolis,1995.

[9] Karypis G., and Kumar V., METIS: Unstructured Graph
Partitioning and Sparse Matrix Ordering System,
Technical report, Department of Computer Science,
University of Minnesota, Minneapolis, 1995.

[10] Scott, J.A., On ordering elements for a frontal solver.
Commun. Numer. Meth. Engng, 15. 309—323 (1995).

