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Abstract 
 

The sparse direct multifrontal solver with block factoring in frontal matrix is presented. The nodal reordering instead of widespread 
finite element one, possibility to work with arbitrary reordering method and block factoring procedure in dense frontal matrix are 
discussed. The numerous examples from computational practice of Software Company SCAD Soft (www.scadsoft.com) illustrate the 
high efficiency of proposed method. 
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1. Introduction 

The sparse direct solvers are widely applied in modern 
finite element (FE) software for analysis of many kinds of 
problems. When the size of finite element problem is not too 
big (it is about 100 000 – 1 000 000 equations for PC 
computers), the sparse direct solvers lead to fast solution. They 
possess a low sensitivity to ill-conditioning, allows one to 
recognize the geometrical instability of computational model 
and the analysis time practically does not depend on number of 
right-hand sides, if one is not too big. So, sparse direct solvers 
are a powerful tool for practical analysis of structural mechanic 
problems. 

This paper is devoted to further development of sparse 
direct multifrontal solver [5], which has been applied in Robot 
Millennium (www.robobat.com) and SCAD 
(www.scadsoft.com) software. The presented here 
improvements cover the more efficient reordering method and 
block mode of TLSL  factoring of dense frontal matrix instead 
of previously applied non-block LU  decomposition. 

2. Sparse direct multifrontal solver 

The reordering methods lead to reduction of fill-in, which 
arises during factoring of stiffness matrix. So, efficiency of 
direct methods essentially depends on ability of chosen 
reordering strategy to reduce fill-in. The widespread fill-in 
reduction technique for today is a minimum degree algorithm 
family and nested dissection technique [1], [6], [7]. The 
evolution of reordering algorithms happened into following 
directions: improving of minimum degree method [7], 
integration of advantages both: the minimum degree methods 
and the nested dissection ones [1] and creation of high-efficient 
multilevel approaches for incomplete nested dissection 
technique [8], [9]. 

Second way to enlarge the performance of computations is 
the application of block technique to factoring procedure. Such 
a blocking of operations allows one to reduce the low-speed 
transitions of data between RAM – CPU due to efficient usage 
of cache memory [2]. 

The presented here block sparse direct multifrontal solver 
combines these advantages. 

Key features of the proposed method are follows:  

• The node-by-node elimination process instead of element-
by-element one is used. That’s mean an elimination of all 
equations, associated with current node. 

• The nodal reordering procedure is applied instead of 
element reordering one. 

• A front is a C++ class object which encapsulates all data 
related to a particular node of a FE model. The number of 
fronts is the same as the number of nodes and the number 
of elimination steps. Each front contains the elimination 
node number, the list of frontal nodes, the list of previous 
fronts (that is, the number of fronts which comprise the 
given front) and the list of assembled finite elements.  

• The elimination process is possible to consider like a 
movement along the frontal tree. 

The solution process consists of following steps. 

2.1. Reordering stage 

Solver takes the permutation array Perm, which assigns the 
nodal ordering, obtained due to taken reordering method to 
reduce the fill-ins. The reverse Cuthill-McKee algorithm [6], 
Sloan method [3], [10], nested dissection method (NDM) [6], 
minimum multiple degrees method (MMD) [7], parallel section 
method (PSM_MMD), improved by using of MMD method [7] 
for each sub-domain, factor-trees method (FQT), multilevel 
nested dissection method with local MMD reordering 
(MND_MMD) (idea of this method is taken from [1] and is 
very close to [8], [9]) are developed in reordering module. 

Moreover, the automatic mode is developed to search the 
proper reordering method among MMD, MND_MMD, 
PSM_MMD and Sloan methods. This search is based on fast 
symbolic factorization algorithm [6]. The adjacency graph for 
finite element nodes is applied instead of equation graph to 
accelerate the search of proper reordering method. 

So, reordering module permits one to select one from 
mentioned above method or assigns the automatic choice. 

2.2. Estimation stage 

The permutation array Perm sets the order of node-by-node 
factoring. All equations, associated with given node, are 
factored on the same frontal step. We set the order of finite 
element assembling to ensure of given nodal ordering [5]. The 
symbolic frontal process creates the structure of level for frontal 
tree and so-called data structure “Process Descriptor” (PD). 
Only one node (all associated with it equations) is fully 
assembled and is ready for factoring procedure on each frontal 
step. The PD data structure contains the list of nodes for each 
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front, list of previous fronts and list of finite elements, which 
must be assembled on current frontal step.  

We tell the difference between successive, start and nodal 
fronts. The start front has no any predecessors (previous fronts). 
The successive front has only single predecessor, and nodal 
front has several predecessors. 

The factorization process is performed in frontal matrix – 
dense matrix, consisted of fully assembled equations, i.e. 
equations, associated of corresponding node on given frontal 
step, and incomplete part. We reorder of fronts to reduce the 
number of incomplete fronts. The appropriate reordering 
algorithm is developed for it. 

The estimation of required RAM and HD (hard disk) space 
is produced. 

2.3. Factorization stage 

Factorization stage consists of node-by-node procedure, 
which covers all nodes of finite element model. On other hand, 
factorization process is possible to consider as a movement 
along structure of levels of frontal tree. 

When start or nodal fronts are met, the memory allocation 
routine reserves the memory space for frontal matrix. The 
special algorithm look over frontal steps till the next nodal front 
will meet. The size of frontal matrix is taken to avoid 
reallocation procedure due to assembling of appropriate finite 
elements on successive part of frontal tree. 

The frontal matrix of nodal front is assembled from frontal 
matrices of previous incomplete fronts and matrices of finite 
elements, assembled on this step. As soon a frontal matrix of 
previous incomplete front is taken for assembling, as 
corresponding memory space de-allocates. It allows one to 
ensure the respectively small requirements to RAM. 

The frontal matrix of successive front takes the pointer of 
frontal matrix of previous front. This allows us to avoid the 
waste transfer of data and allocation – de-allocation procedures. 

So, each step of factorization is produced in frontal matrix, 
consisted of fully assembled equations and incomplete part [5]. 

2.4. Operations in frontal matrix 

The Gauss elimination procedure is applied to partial 
factorization of frontal matrix in early versions of presented 
sparse direct multifrontal solver [5]. The main disadvantage of 
this approach is a low performance of Gauss elimination in 
frontal matrix. The block Cholesky factorization algorithm is 
developed instead of column-by-column Gauss elimination one 
and is presented in proposed paper. 

The cluster of equations is associated with each node. So, 
the several equations are fully assembling simultaneously on 
each step of frontal process. It allows us to apply the block 
factoring approach, where size of block equals to the number of 
equations in cluster. Size of fully assembled block equals to the 
number of degrees of freedom in node. So, the size of fully 
assembled block usually equal 6 for 3-D finite element model, 
for spatial trusses and solids – 3, and so on. Such an 
argumentation is fairly for unconstrained nodes. If some degrees 
of freedom in given node is constrained, the number of fully 
assembled equations is less than it was presented above. It leads 
to slight decreasing of computational performance, but not 
destroy of general idea of block factorization. 

First of all let us consider the situation, when fully 
assembled equations are located at the beginning of matrix 
(Fig. 1). Such an example is considered only to illustrate the 
principal peculiarities of block Cholesky factorization. 

The partial block factorization is possible to be presented as 
a follows: 
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Fig. 1. Permutated frontal matrix 

 
• Factorize diagonal block TLSLD L ⋅⋅=  (1), where LS  is 

a sign diagonal. The column-by-column Cholesky 
algorithm is applied here. Size of diagonal block does not 
exceed the 6. It is a small matrix, which is possible to 
allocate fully in cache memory. So, the order of loops in 
program code does not play of important role. 

• Update column W : 
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                                      (2) 

The number of right hand sides of (2) is 3 or 6, if 3-D 
problem is considered. So, the block resolution mode is applied 
to ensure the level of BLAS-III (Basis Linear Algebra System) 
[2]. 
• Update sub-matrix MM : 

TWSWMMM L
~~

⋅⋅−=                                  (3) 

The LS  is a diagonal matrix and is stored in core as a 
vector. So, matrix operation (3) is similar to well-known one 

TAACC ⋅−= . The block matrix product is applied to ensure 
the level III of BLAS [2]. 

 

 
Fig. 2. Block factoring of stiffness matrix 
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The previous version of sparse direct multifrontal solver [5] 
realises the non-block mode. If the size of block is taken as 1, 
the presented above algorithm achieves only level II of BLAS. 
It is clear, that the previous version of solver [5] corresponds in 
the best case only to level II of BLAS. This fact explains the 
advantages of proposed here approach. 

In reality, situation is more complicated because the cluster 
of fully assembled equations is placed in arbitrary part of 
matrix. The typical structure of frontal matrix is presented on 
Fig. 2. Theoretically, this case is possible to reduce to case, 
shown on Fig. 1, by means of permutations. However, this way 
leads to decreasing of computational performance due to waste 
operations, caused by indirect access to data. 

In proposed version of solver we do not apply any 
permutations. The matrix is subdivided on 3 sectors: A, B, C. 
Fully assembled part of matrix TWL ~,  is stored in a special 
buffer, and only we produce the steps (1), (2) only in core of 
this buffer. After factorization of diagonal block and update of 
sub-diagonal one this part of matrix is a fully decomposed. 
When buffer is exhausted, this data are stored to secondary 
storage (hard disk HD), and buffer is cleared to be ready to the 
next usage. So, factored global finite element matrix is fully 
reconstituted on disk only after frontal process is finished. 

The incomplete part of matrix is presented by blocks A, B, 
C. The update of these blocks corresponds to (3), but algorithm 
is more complicated. Data of sector A remain on the same 
positions, data of sector B are shifted up by number of fully 
assembled equations n (e.g. by width of block) and data of 
sector C are shifted up and left by n positions. So, at the end of 
current frontal step the frontal matrix comprises only 
incomplete part. Dimension of it is nN − , where N  – 
dimension of frontal matrix before factoring step and n  is a 
number of equations in fully assembling cluster (block). 

Then we pass to the next frontal step. 

3. Examples 

3.1. Multi-storey building 

The finite element model of multi-storey building (Fig. 3) 
comprises 195 585 nodes and 204 067 finite elements 
(1 171 104 equations). The computation time for different 
modes and ability of multi-frontal solver to reduce non-zero 
entries in matrix is presented in Tab. 1. 

The non-block mode means, that factorization procedure in 
frontal matrix consists of equation-by-equation (non-block 
routine) factoring. In this case the performance of computations 
is slow, because the waste cache – core transition of data 
presents. 

The block mode realises the presented above block 
factorization in frontal matrix. 

 

 
Fig. 3. Multistorey building 

Column 1 presents the performance of sparse direct 
multifrontal solver [5], when non-block mode and QMD/NDM 
reordering [6] is applied. Column 2 illustrates the efficiency of 
improved reordering technique – MMD or multilevel nested 
dissection reordering [7], [8], [9]. Column 3 shows the 
acceleration of computations due to both: improved reordering 
and block mode of factoring. All computations have been 
produced on PC computer Pentium III (1024 MB RAM, 1.2 
GHz CPU). 

 
Table 1. Comparison of computation time and non-zero 

entries 
 Non-block 

mode. 
QMD [6] 
reordering 

Non-block 
mode. 
Multilevel 
nested 
dissection 
reordering [8] 

Block mode. 
Multilevel 
nested 
dissection 
reordering [8] 

Column 1 2 3 
Time 5 h 44 m 3 h 29 m 1 h 08 m 
Non-zero 
entries, MB 

3 246 2 694 2 694 

 

3.2. Ribbed cylindrical shell with discrete-point connections.  

The thin cylindrical shell with circular thin-walled ribs is 
considered (Fig. 4). The contact between shell and rib is 
produced only in discrete points. Such a model simulates a 
point-wise welding. It is necessary to create a dense mesh to 
ensure a good approximation of bending moments and 
membrane forces in contact zone. 

 

 
Fig. 4. Ribbed shell with discrete welded connection. a – 

computational model with fine mesh, b –model with a coarse 
mesh  

 
The finite element model (fine mesh) comprises 304 200 

nodes and 300 300 finite elements (1 819 800 equations). A 
coarse mesh is presented to clearly illustrate the computation 
model, because a too dense fine mesh does not provide a good 
understanding of model on figure. 

All computations have been produced on PC computer 
Pentium III (1024 MB RAM, 1.2 GHz CPU). The results are 
presented in Tab. 2. 

The nested dissection reordering method [6] for non-block 
mode is a more preferable for this problem than QMD one. The 
most preferable is a multilevel nested dissection reordering [8]. 
The block mode and proper reordering method allows us to 
reduce the computation time almost in 3 times comparing with 
old version of solver [5]. 
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Table 2. Comparison of computation time and non-zero 
entries 

 
 Non-block 

mode. 
NDM [6] 
reordering 

Non-block 
mode. 
Multilevel 
nested 
dissection 
reordering [8] 

Block mode. 
Multilevel 
nested 
dissection 
reordering [8] 

Column 1 2 3 
Time 9 h 51 m 6 h 40 m 3 h 46 m 
Non-zero 
entries, MB 

5 216 4 441 4 441 

 

3.3. Structure – soil interaction problem. 

Usually such a problem (Fig. 5) gives rise a stiffness matrix, 
which is very hard to be optimized to reduce fill-ins for 
application of direct methods [4]. The finite element model 
contains 104 048 nodes, 111 269 finite elements and 319 133 
equations. A non-uniform mesh on the soil is denser in the 
building foundation area. 

 

 
Fig. 5 Structure – soil interaction problem 

 
The previous version of sparse direct multi-frontal solver 

(the nested dissection reordering method), based on non-block 
mode of Gauss elimination in frontal matrix, requires about 
1292 MB RAM only for allocation of the maximal front (18 403 
equations) which is more than the available storage on our 
computer (PC Pentium-III, CPU Intel-1266 MHz, 1024 MB 
RAM). The size of non-zero entries in stiffness matrix is 7 869 
MB (Tab. 3).  

The block version of multifrontal solver, using the 
multilevel nested dissection reordering, allows one to reduce 
both: the size of maximal front to 306 MB and the size of non-
zero entries to 3 189 MB. It is approximately in three times less 
comparing with nested dissection reordering method [6]. As a 
result, this problem has been successfully solved on given 

computer. The block mode allows us to reduce the computation 
time almost in two times comparing with non-block Gauss 
elimination one. 

 
Table 3. Comparison of computation time and non-zero 

entries 
 

 Non-block 
mode. 
NDM [6] 
reordering 

Non-block 
mode. 
Multilevel 
nested 
dissection 
reordering [8] 

Block mode. 
Multilevel 
nested 
dissection 
reordering [8] 

Column 1 2 3 
Time — 10 h 16 m 5 h 51 m 
Non-zero 
entries, MB 

7 869 3 189 3 189 

4. Conclusions 

The advanced reordering method together with block 
Cholesky factoring mode of frontal matrix essentially improves 
the performance of multifrontal solver, presented in [5]. It 
allows us to apply this method to analysis of very wide range of 
structural mechanics problems from practice of software 
company SCAD Soft (www.scadsoft.com). 
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