
CMM-2003 – Computer Methods in Mechanics June 3-6, 2003, Gliwice, Poland 

  

Problems of computational mechanics related to finite-element analysis  
of structural constructions  

 
Anatoly V. Perelmuter and Sergiy Yu. Fialko * 

Software company SCAD Soft 
13, Chokolovsky bld., room 508 

Kiev, 252680 GSP, Ukraine 
e-mail: fialko@erriu.ukrtel.net 

Abstract 
 

The problems of computational mechanics, concerning with application of finite element analysis to structural constructions, are 
discussed. Our attention is addressed to medium-class software for personal computers with which structural constructions are 
usually analyzed. The complexity of a system and simplicity of its components, the large-scale of finite element problem, the 
heterogeneity of finite elements and its coupling, the estimation of correctness of finite element model, the problems of seismic 
analysis, the problem of indeterminacy and so on are the objective of this work.  
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1. Introduction 

The contemporary market of industry-oriented software for 
structural strength analysis impresses very much by its 
versatility and widest functionality. There are real giants on this 
market such as ANSYS, ADINA, COSMOS, MSC NASTRAN 
and others, not restrained to any particular field of application 
but oriented at large-scale problems. A special place in this 
sphere is occupied by software intended for analyzing and 
designing structural constructions — SAP 2000, SCAD, 
GTSTRUDL, Robot-Millennium etc. These we will call 
medium-class software. Programs like these succeed in 
providing features especially appreciated by structural engineers 
— such as graphical preprocessors and postprocessors, 
catalogues of profiles, materials, regional climatic regulations. 
They include specific analysis options (construction of 
influence lines, seismic analysis etc.) Other special-purpose 
software can be mentioned, too, particularly programs oriented 
at narrow classes of problems or tutorial purposes. 

Our attention will be addressed to medium-class software 
for personal computers with which structural constructions are 
usually analyzed. Problems related to the analysis of this kind 
have their peculiar flair that affects the structure and 
functionality of a computer program. There are certain 
requirements to analytic methods employed by the software, 
too.  

Another important circumstance is that the software of this 
type is oriented commonly at the level of expertise possessed by 
a design engineer rather than a scholar researcher. Therefore the 
software should have an intuitive interface and highly 
automated functions. These programs should also account for 
specifics of the management of structural design activities. In 
particular, a typical form of organization used in this industry is 
a design team that includes a lead analyst who solves 
complicated problems of general nature and a few engineers 
who prepare data and solve series of more specific problems. 
The latter use simpler satellite programs interfaced with the 
main application administered by the analyst. 

Our discussion is based on the experience of development 
of the SCAD Office [6] and Robot Millennium [16] software 
because the authors of this report are members of their 

development teams, participate in the support of the software, 
and are familiar with both the architecture and functionality of 
these programs. 

2. Peculiarities of computational analysis in structural 
engineering 

2.1.  Complexity of a system and simplicity of its components 

Objects of structural engineering are residential and 
public buildings, bridges, tanks, television towers, industrial 
buildings, and a great variety of other types of structures (Fig. 
1). Civil buildings belong to most widely spread objects of 
construction. 

All these objects, though much different, have 
common peculiarities in their design models:  
• Bar elements are used extensively in structural models, 

unlike most objects of mechanical engineering. Even if the 
shape of a structure seems sophisticated, its load-bearing 
framework may consist of elements of relatively simple 
geometrical configurations. A characteristic example of 
this is one of most whimsical buildings, the Gugenheim 
Museum in Bilbao (Fig. 2). All the more so, this statement 
relates to most of the objects shown in Fig. 1. Design 
models of industrial, residential and public buildings, in 
their vast majority, consist of sets of rectilinear bars, plates, 
and flat shell elements. The latter have rectangular 
configurations, as a rule, or contain a number of 
rectangular sub-areas. Therefore the civil-engineering-
oriented software systems deal very little with spatial finite 
elements which are often used to analyze FEM models of 
mechanical engineering objects (an example is a popular 
program SolidWorks [2].) These peculiarities of structural 
construction models beg for special software to be 
developed. 

• High dimensionality of models required by complicated 
geometrical shapes of walls and floors, the use of 
automatic mesh generators and an object approach which 
treats a structure as a set of story, wall, floor etc. objects. 

• A noticeable spreading of stiffness properties which causes 
an ill conditionality of the respective mathematical model. 
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Joints between elements of different types with different 
numbers of degrees of freedom in a node. Often enough, this 

circumstance brings the necessity to regularize the model’s 
equation system, and this causes the ill conditionality again.
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Figure 1: Examples of structural 
objects: (а) a residential house; (b) a 
bridge; (c) a skyscraper; (d) a 
television tower; (e) an industrial 
building; (f) an office building; (g) a 
tank; (h) an arc of a hangar 
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Figure 2: The Gugenheim museum: (a) its appearance; (b) its load-bearing framework 

 

2.2. Model dimensionality  

The structural analysis may involve models and schemes 
which are quite typical and by no means break records by 
containing 20 to 30 thousand nodes, 30 to 50 thousand 
elements of various types (bars, plates, shells, elastic links), 
and possessing over one hundred of stiffness property sets. 15 
to 30 different loading patterns are usually under 
consideration, each one including hundreds of components of 
nodal or distributed loads. The dimensionality  

 
 
 

of the model grows drastically if one has to analyze load-
bearing constructions of a structure jointly with its soil bed. 
An example of this kind is shown in Fig. 3,a where the model 
of a structure includes 27,138 equations while the “soil–
structure” model consists of 319,133 equations. 
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Figure 3: A design model of a structure together with its foundation 

 
Usually, this class of problems can hardly be solved by 

direct methods because the structure of the adjacency graph 
with its root in a pseudo-peripheral node is not extended. In 
the example given above, we did not manage to factor the 
stiffness matrix using a PC Pentium III (CPU Intel 1000 
MHz, RAM 512 MB) because the multi-front method with 
nested section ordering required 1292 MB of RAM to store 
the maximum front, while the skyline method (RCM 
ordering) demanded over 20 GB of disk storage. So, this 
problem was solved by iterative methods. 

 

2.3.  Heterogeneity of finite elements, problems with 
matching those 

A plethora of complexities with the creation and 
verification of design models are related to a typical 
heterogeneity of finite elements often encountered in this 
class of computational analyses. It is only a rare case that the 
whole structure is represented by elements of the same type 
(such as plates). Most often, a single design model includes 
bars, plates and other finite elements at the same time. 

It is a must for an advanced computational software 
system to allow nearly every possible combination of finite 
elements of most various types, dimensionalities, sizes and 
shapes, different stiffness properties. There are a lot of 
dangers here, sometimes revealed and sometimes concealed. 
The latter are especially hazardous.  

A typical example can be an analysis of a spatial bar 
framework together with its slab foundation. This kind of a 
design model includes plate finite elements and bars attached 
rigidly to the slab. The axes of the column bars should cross 
the median surface of the slab in nodes of the finite element 
mesh on the slab. If no additional measures are taken, the 
design model described above will provide for a perfect 
match both between vertical displacements of the slab and the 
columns (perpendicular to the plane of  the slab) and between 
respective slopes in nodes where the plate and bar elements 

join one another. Though, bending moments in sections of the 
columns near the slab calculated by this model have nothing 
in common with the true distribution of internal stresses. 

To see this, imagine how the mesh is getting denser and 
the user expects the computational results to become more 
and more accurate. Though, starting from a certain scale of 
the mesh, further densification will be lessening the absolute 
values of the bending moments in the bars at points of their 
attachment to the slab. 

In the limit, as the maximum size of the mesh cell tends 
to zero, these bending moments will tend to zero, too. This 
means that the design model in question provides a hinged 
rather than rigid connection between the framework elements 
and the slab. The fact that the user does obtain some formal 
nonzero bending moments with a particular finite element 
mesh of his choice evidences just an error of discretization 
and nothing more. But there is no reason at all to take the 
discretization error for an intended credible result! 

In the design model presented above, the bars transfer 
concentrated bending moments to the slab. As is known, the 
solution of this elasticity problem has a logarithmic 
singularity in the slopes. Therefore the slope at the 
concentrated bending moment application point tends to 
infinity as the mesh becomes denser. Consequently, in order 
for the work of the concentrated moment at the slope to be 
finite, the bending moment itself must be zero. Thus, making 
the mesh denser will force the numerical solution to tend to 
the hinged column-to-slab attachment case. 

Results presented below make a confirmation of that. 
Let’s consider a square slab clamped along its sides and 
having a single column standing in the middle of the slab and 
fixed to it rigidly. The free top end of the column is subjected 
to an external concentrated force P directed along the global 
axis X (Fig. 4,a). The bending moment in the bottom section 
of the column will be a constant magnitude not depending on 
the size of the finite element mesh because the system is 
statically determinate with respect to the column. 
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The calculation of the displacement wn of the column’s 
free end in the direction of the load using different finite 
element meshes (2n by 2n) shows that the deflection of the 
column grows almost linearly as n is increasing above n > 32. 
This results in an unlimited growth of the slope in the root 
section of the column as the finite element mesh becomes 
finer (see Fig. 4,b). 

Of course, the fact is that it is the user who must be 
responsible for correctness of his design model from the 
viewpoint of mechanics and adequacy between the finite-

element model and the real structure. Though, there have 
been made numerous attempts to prevent the said dangers by 
means of software implementation. In particular, flat shell 
elements resistant to drilling rotation have been introduced. 
This has been claimed to solve the problem with a torsion in 
an attached bar. Though, a detailed analysis shows that this 
way may lead to serious errors. 

A more involved consideration of this problem is 
presented in the report [10] at this conference. 
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Figure4: A column fixed to a slab: (a) a schematic; (b) a displacement changing under the effect of the force 

 
 

3. Estimation of correctness of input information  

3.1. Trivial checks 

It is known that the probability for an error in input data is 
much higher in large-scale problems. Engineering psychology 
researches state a power dependence of the human error 
probability on the volume of information processed by the man. 

 
Figure 5: A spectrum of rigidities 

 
Any contemporary computational analysis program operates 

fairly heterogeneous data which describe properties of finite 
elements, nodes, loads etc. The heterogeneity of the input 
information is of especial complexity for software systems 
oriented at performing structural design tasks. It is important for 
one to be able to detect and extract deviations from a common 
relationship, for example, analyze the spread of rigidity 

properties and represent those as a spectrum of rigidities (Fig. 
5). 

3.2. Validation of kinematical stability in the course of the 
matrix decomposition 

Checks can be performed in the course of solving a 
problem, too. Errors in the model can be detected right during 
the solution, particularly such as a kinematical instability and 
the lost of positive definiteness of the matrix (in cases there 
must be one). 

The presence of the kinematical instability is evidenced by a 
substantial reduction of the governing element of the matrix 
comparing to the respective diagonal element before the 
factoring. Though, the detection of a node’s No. and the 
respective degree of freedom in the node based on this method 
is not always successful. 

 

3.3. Detection of kinematical instability and other errors in a 
design model, visualization of kinematical mechanism schemes 
based on the natural oscillation analysis 

To detect possible mechanism-type motions in a structure, 
the SCAD software implements a special analysis mode based 
on a Lanczos block method and involving spectral 
transformations. The idea of this option is to use a shift 
technique which enables one to analyze unconstrained systems 
and even mechanisms. In the latter case the system’s stiffness 
matrix K  is singular. Though, the BKK σσ −=  matrix is 
not singular provided that the shift σ  is chosen appropriately, 
and it can be factored. In particular, the matrix B  can be 
assumed equal to the mass matrix M . Then, the presence of 
zero natural frequencies in the model 02 =− φϖφσ MK  
evidences the kinematical instability, and natural modes that 
conform to zero frequencies describe possible movements of the 
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mechanism strictly. included in their original form and will be 
reproduced in black and white.  

This approach enables us both to determine whether a 
particular system is kinematically unstable and to visualize 
modes of mechanism-type motion, thus giving the user a hint 
where to install additional constraints in order to eliminate the 

instability. Fig.6 shows a fragment of a structure that contains 
an unconstrained solid body, and one of its possible 
mechanism-type modes of motion. 

A more detailed presentation of the same material can be 
found in the report [13]. 

 

 
Figure 6: Detecting a rigid-body mode of motion 

 

4. A specific type of analysis — seismic analysis 

4.1. Sum of modal masses and local modes 

It is known that the sum of modal masses is a criterion 
whether the number of natural modes taken into account is 
sufficient. Current seismic regulations require that the sum of 
modal masses along each direction be at least 90%. In many 
cases this requirement can hardly be met. It often appears that 
the lower part of the spectrum includes local oscillation modes 
that contribute only a little to the response of the whole system 
as it moves during the seismic event. Some kinds of structures 
do not even contain oscillation modes which contribute much to 
the seismic movement of the system. One finds that in those 
structures small pieces of its seismic response are distributed 
over a large number of natural modes. In this connection, there 
arises an enormous computational problem — how to determine 
100 to 500 or even more natural frequencies and oscillation 
modes. 

4.2. Development of specific algorithms — Ritz vectors, a 
residual mode, a seismic mode etc. 

To escape from this situation, the following measures are 
usually taken. E. Wilson suggests in his papers that 
decompositions by natural modes should be replaced by 
decompositions by specially constructed Ritz vectors, more 
informative ones for the purpose of seismic analysis [14]. This 
method is implemented in the SAP2000 software. A similar 
technique has been used in the Robot Millennium software [15]. 
Another trick is to use a residual mode (a pseudo mode). 

Apparently, it should be admitted that the problem has no 
easy solution for today. The matter is that the solution of a 
dynamics problem in terms of Ritz vectors is strict only if 
motion equations are integrated directly. At the same time, most 
dynamical problems in the structural engineering practice are 
solved by the spectral technique. The latter has some immanent 

contradictions when using a basis different from the set of 
natural modes, so one may obtain noticeable discrepancies 
between the calculated displacements/stresses and those 
observed in reality. 

4.3. Problem of data amount, filtering 

In many cases one can reduce the computational effort 
essentially by using only some chosen natural modes that 
contribute much to the seismic response of the system. This 
kind of filtering is based on an analysis of modal mass values 
for each natural mode. This approach is implemented in the 
Robot Millennium software [15, 16]. 

5. Requirements to the software’s response speed 

5.1. Sources of requirements  

Actually, the reduction of computation time has ceased to 
be a critical issue in common structural design activities. The 
usual relation of the effort and time is such that the most part of 
business time (at least 80%) is spend for preparations and 
verifications of input data, and then for reviewing and analyzing 
results. Under these circumstances one may think that trying to 
reduce the governing equation system solution time from twenty 
minutes to two makes no real sense. Developers often express 
this point of view, but we believe it is not true. 

We deem it useful to indicate a number of practically 
important problems in which the speed of solution of 
linear/linearized governing equation systems is a really critical 
point:  

• the design in an interactive dialog mode seems 
impossible if the software responds too slow; a long and 
painful waiting for an answer makes the interactive 
design procedure almost fruitless; 

• in spite of the authors’ steady belief that an extensively 
detailed design model is just a serious mistake of an 
analyst, large-scale problems do arise in real design 
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practice — for example, as long as a complex 
“structure–soil” system is under consideration where 
three-dimensional finite elements are used to simulate 
the soil bed’s behavior; 

• the solution of nonlinear problems involves multiple 
solutions of linearized systems of governing equations 
at each step of a step-by-step procedure or at each 
iteration; 

• optimization problems and related multi-variant searches 
also lead to the need for multiple solutions; 

• problems with indeterminate parameters are posed and 
solved more and more often recently; for these, one of 
most universal techniques is an imitative modeling 
(including the dynamical behavior modeling) which 
requires the same multiple repetition of linear solution. 

These and other related problem formulations can be feasible 
only if the software used to perform the task is provided with 
efficient algorithms for solving systems of algebraic equations 
and eigenvalue calculation. 

5.2. Construction of quick solvers 

The quick solvers in the FEM analysis available for today 
include direct methods for sparse matrices and highly efficient 
iterative methods. 

The advantage of direct methods is their low sensitivity to 
ill-conditioned matrices and to the number of right parts (if 
there are not too many), and the possibility to detect the 
kinematical instability of the design model. The efficient direct 
methods are based on a reduction of filling. The filling means 
nonzero elements of the factored matrix standing in positions 
where zeros used to be in the original matrix. The less filling is 
reached, the higher the efficiency of a direct method. Therefore 
the most responsible step for a direct method is the matrix 
reordering. Until recently, the most popular reordering 
algorithm was an inverse Cuthill – McKie method employed to 
decrease the profile width [17]. In recent years the most widely 
spread methods have become the minimum degree algorithm, 
the nested section method, and the multi-section method based 
on domain decomposition [18]. Commercial FEM programs 
implement direct methods for sparse systems, most often, on the 
basis of a multi-front approach [18-22]. 

Iterative solvers are preferable for large-scale problems in 
which the number of equations can be 100,000 to 700,000 or 
more. Their drawbacks include a slower convergence in the case 
of ill conditionality and a high sensitivity of the computation 
time to the big number of right parts. The effective technique to 
suppress the ill conditionality effect is a preconditioning. 
Suppose a linear static problem bKx =  needs to be solved. 
The preconditioning consists of a transition to another problem 

bBKxB 11 −− =  where B  is a preconditioning operator. If B  
is positive definite, the system of equations kk rBz = , where 

kk Kxbr −=  is a residual vector and k  is No. of iteration, 
can be solved much faster than the original system, and its 
conditionality number )()( 1 KKB CC <− , then the 
preconditioned problem will have a faster convergence than the 
original one. In a limit case, when KB = , the preconditioned 
problem converges to its exact solution in one iteration. So, the 
trick of quick iterative methods is how to construct such 
preconditioning which would not require much time and 
resources and at the same time provide that 1)( 1 →− KBC . 

The theory of iterative methods states that lower modes are 
the slowest in convergence. The worse the conditionality of a 
problem, the slower their convergence [23]. Hence the idea of 
multilevel methods [29, 30]. The key point is to construct a 
rough-level model intended for predicting low-mode 
components of the solution. The convergence in high-mode 
components is ensured by smoothing. The maximum effect is 
usually achieved by combining the preconditioned conjugate 
gradient method and the multilevel method’s idea. This builds 
up a family of conjugate gradient methods with multilevel 
preconditioning. 

Commercial FEM programs employ most often the 
conjugate gradient method with preconditioning of an 
incomplete Choletsky factorization type, multi-mesh methods, 
algebraic multi-level techniques [24, 25], and aggregative multi-
level method [26], methods of space decomposition and 
subspace correction [27]. A review of iterative methods is 
presented in [28]. 

Talking about the eigenvalue problem, we should note that 
currently most popular methods based on the stiffness matrix 
factorization include the block subspace iteration method [14] 
and the Lanczos block method [30, 31]. The implementation of 
the Lanczos block method with shifts in the SCAD software 
will be discussed in [13]. 

In cases when we cannot reorder the stiffness matrix 
efficiently, it is reasonable to use methods not requiring the 
matrix to be factored. The most efficient technique is the 
conjugate gradient method with preconditioning [28]. Though, 
the traditional algorithm of this method suffers from a 
convergence suffocation in some cases [33]. This is overcome 
by introducing shifts into the preconditioning [34, 35]. A more 
detailed discussion of this problem will be given in the report 
[36]. The report [37] presents a quick approximate method for 
determining natural oscillation frequencies and modes. That one 
is a Ritz method which makes use of a gradient procedure with 
aggregate multilevel preconditioning to construct an orthogonal 
system of basis vectors. 

A modern FEM analysis software must implement both 
quick direct methods and iterative ones because nobody can say 
beforehand what method is going to be most efficient in a 
particular case. For example, prominent programs like MSC 
NASTRAN, ANSYS, ADINA include both direct sparse matrix 
solvers and efficient iterative solver tools at their disposal. 
Among civil-engineering-oriented software, we should notice 
Robot Millennium which also implements both direct sparse 
solvers and an aggregate multilevel iterative solver [15]. The 
SCAD software that implements a multi-front solver is worth 
mentioning, too. 

6. Choosing a most disadvantageous combination of loads 

The peculiarity of construction objects is that one has to 
deal with a plethora of variations of loads applied to a structure. 
This is an essential distinction from “common” engineering 
where this problem is less sharp. 

The fact is that even simplest buildings have tens of rooms, 
and in each of those the useful load can be present or absent in a 
particular moment. It is by no means obvious that the critical 
case will be the fully loaded structure. Moreover, we can say for 
sure that it is not the case for a good deal of structures. Then 
add the necessity to account for a few possible directions of 
wind or seismic loads, and numerous possible positions of 
movable loads such as those caused by bridge cranes. All this 
makes it quite clear how much effort the problem of choosing a 



 

7 

design load combination may take. One should note also that a 
direct exhaustion of possible variations is difficult even when 
there are only twenty or thirty independently acting loads. 

In essence, one needs to solve some optimization problem 
where one has to find an extremum of the structure’s response 
in the set of possible loaded states of the system. This set may 
be of a pretty complex build because some of the applied loads 
can be related to one another via logical relationships of the 
following types: 

incompatible — some loads cannot act together for purely 
physical reasons, for example, a south wind cannot be 
accompanied by a north wind, nor snow can be combined with 
the maximum summer heat; 

bound — certain loads can be treated only as acting 
together; this is often the case when different loads are of the 
same physical origin and are presented separately only for 
convenience; 

accompanying — one of loads cannot exist without the 
presence of another, while the other way round is quite feasible: 
for example, the bridge crane’s braking force cannot exist 
without the pressure of the crane’s wheel, while the pressure 
can exist without braking; 

limited — some of jointly acting loads cannot exceed an 
established limit in total, for example, loads from bridge cranes 
are limited to two cranes on a single pathway or in the same 
section. 

One of feasible approaches to the solution of the problem is 
to represent the logic of interaction between different loads as 
an oriented graph [9]. Then the problem can be formulated as a 
known problem of searching a network for the biggest flow [8]. 

Let’s give an example of such graph for the situation when 
the following elementary loads can be applied: 

• 1 — dead weight; 
• 2 — snow; 
• 3 — wind from the left; 
• 4 — wind from the right; 
• 5 — maximum pressure of the crane onto the left column; 
• 6 — maximum pressure of the crane onto the right column; 
• 7 — braking of the cranes to the left transferred to the left 

column; 
• 8 — braking of the cranes to the right transferred to the left 

column; 
• 9 — braking of the cranes to the left transferred to the right 

column; 
• 10 — braking of the cranes to the right transferred to the 

right column. 
Fig. 7 shows a schematic of the respective graph where 

there are arcs 1–10 conforming to the elementary loads listed 
above and four more arcs (dash lines in this figure) conforming 
to zero values of the load intensity. These additional arcs enable 
one to bypass those loads in the graph which must not 
necessarily be included in a design load combination (that is, 
which unload the structure). 

 
Figure 7: A graph of the logical structure of loads 

 

7. Problem of indeterminacy 

Modern buildings or other structures are, most often, 
complex structural multi-element aggregates created to perform 
a plenty of different functions. During their lives the structures 
go through a long sequence of various working states. The 
specifics of structural engineering is such that its final product 
(a building, a structure) must combine three features often 
contradicting one another: functionality, aesthetics, 
designability. 

An idealization of the design model and impossibility to 
make it a perfect reflection of the real structure create a 
situation of some indeterminacy. It is these conditions of 
indeterminacy under which design decisions have to be made. 

The indeterminacy is caused by either unavailability of 
required information (for example, we are not able to know all 
future regimes of the structure’s operation) or its 
incompleteness (we can hardly imagine knowing mechanical 
constants precisely in any point of the structure). The 
unavailability of some types of information and its 
incompleteness are key points — they cannot be overcome 

altogether, and deeply as we could study the problem of our 
interest, we may never say we have taken absolutely all into 
account in our model. 

Though, it is not only the unavailability and incompleteness 
of data that causes the indeterminacy to appear. There is also an 
ambiguity of the data, that is, a possibility to interpret the same 
factors differently. This circumstance requires us to estimate all 
possible alternatives. There are known classical approaches to 
the indeterminacy which can be classified into the following 
decision-making methods: 

• making use of the probability theory, the decision being 
based on the objective earlier experience; 

• making use of expert estimations, the decision being 
based on the subjective experience of an expert (or a 
panel of experts); 

• a minimax estimation, when the best of achievable 
solutions is adopted with the assumption of the worst 
possible course of events, i.e. the decision is made by the 
possible result. 

All these options can be used together or separately. They 
are intended to estimate the credibility of a design model. There 
are other factors, too, which determine how approximate the 
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design model is and what errors, distortions, contradictions may 
appear in it. 

First, there are design modeling errors (approximation 
errors) that appear due to either our knowledge’s approximate 
nature itself or an intentional rough approximation of it. These 
“errors” include using simplified mathematical representations 
such as polynomials of low degrees for describing displacement 
fields in the finite element analysis, truncation of series in the 
Galyorkin method etc. The same category includes errors 
caused by discrepancies between scientific theories and 
assumptions that are used to simulate different parts of the same 
design mode. A typical example is a discrepancy between 
concentrated forces as popular models of loads, on one hand, 
and plate finite elements, on the other hand. The latter cannot 
balance the concentrated actions by finite values of their shear 
forces. It is natural that totally mythical values of the shear force 
in elements obtained by such calculation result directly from the 
said discrepancy between the models. 

Second, we should note the approximate character of nearly 
all specifiable properties of a model. This is related to 

tolerances for sizes, weights and other measurable magnitudes 
existing in practice. From the practical viewpoint, both 
inaccuracies stated above differ little. Though, in the first case 
we deal with a limited accuracy of our simulation (either 
intentional or unconscious) while in the second case it is the 
original object’s properties which cause the limited accuracy. 

8. Postprocessing 

8.1. Problem with understanding 

Results of static or dynamical analysis of a complex system 
represented as numbers contain vast arrays of data perceiving 
and reviewing which is practically unfeasible. A selective result 
printout option available in most programs is of little help, too, 
because the analyst does not necessarily know which of the 
values he expects to be critical. 

 

 
 
а)  

 
 

b) 

 
 

c) 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 8: An example of localized ultimate values of a factor 
of interest: (a) isofields in the whole model; (b) displaying 
only maximum values of the factor in the 
”transparent” model using color markers; (c) isofields of 
maximum values limited to a specific range. 

A much better demonstrativeness can be achieved by 
using graphical representations of results as curves, color 

maps, isofields. These methods compress the data to a great 
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extent, and the information thus becomes more or less 
apparent. 

Though, even this technique is not always enough to 
make a proper analysis, because the graphical information 
can be still hardly accessible for the system as a whole (Fig. 
8,a). A fragmentation of it will restore the demonstrativeness 
but cause another problem — how to find a particular 
fragment at which specific results of the user’s interest have 
been obtained [12]. Solution of this problem is not trivial at 
all for a complex model consisting of tens or hundreds 
thousands of nodes and elements. For example, Fig. 8,a 
shows a design model with isofields of vertical displacements 
drawn on it. Note that this figure does not show an area of 
maximum values. 

The way out of the situation can be a technique suggested 
in the SCAD software. It is based on a control of color 
indication and described in detail in the report [11] at this 
conference. The point of it is that one uses the color map to 
find the factor in question in the “transparent” model, first, 
and then detects the location where the needed values appear 
(Fig. 8,b). Next, the color indication is used only for a part of 
the isofield that belongs to the range of interest, and all the 
other levels are turned off (Fig. 8, c). In this way “critical” 
results of the analysis are localized. 

The general depiction given by the graphical 
representation of the analysis results accords best with the 
well-known statement that the goal of a calculation is an 
understanding rather than a raw number. Having analyzed the 
general picture, one should always turn to numerical results 
that now can be selected from the common data flow 
consciously. 

When dealing with problems of buckling/stability, one 
should be aware of a universal tool for visualizing the stress 
and strain distribution in a system. This tool is a picture of the 

deformation energy field. If the energy distribution has been 
constructed with taking the geometrical stiffness matrix into 
account, in this way one acquires the capability of classifying 
particular fragments of the system (down to its separate 
elements) into one of two following categories: either 
restraining or pushing elements (parts) of the system [2]. The 
restraining elements facilitate the stable equilibrium of the 
system, while the pushing elements play a negative role 
because they force (push) the mechanical system to buckle. 

The role played by a particular subsystem is checked by 
calculating the energy accumulated by this part as it deforms 
by a buckling mode. For the system as a whole this energy is 
zero. Parts where it is non-positive are pushing ones, while 
those with a positive deformation energy can be classified as 
restraining subsystems.  

Based on numerical values of the energy, pushing 
elements of the system can be ordered by the degree of their 
“blame” for the critical state of the system. A contribution of 
each of the system’s elements to its total energy balance can 
serve as a convenient quantitative measure of its 
responsibility for the equilibrium stability. 

8.2. Meeting requirements of design codes 

In the course of the structural design procedure, results of 
static and dynamic analyses of constructions are used to 
estimate their strength and stability. This process is regulated 
by design codes. Unfortunately, design codes are by no 
means as strict and non-contradictory as computer mechanics 
methods. These documents were initially created when 
manual calculations reigned supreme, they absorbed informal 
practical experience, and they are based on a great deal of 
compromises.

 
 

 
Fig.9. A load-bearing ability area 

 
The design regulations contain numerous empirical 

relationships, correction coefficients, and “simplifying 
assumption” which very often can be “complicating 
assumptions” on the way of computer analysis. All these 
together create certain problems for software developers, 
namely: 

• how to match the level of accuracy of the analysis with the 
accuracy of formulations found in the codes, because a 
paradoxical situation often arises — a system calculated 
with a higher accuracy is inferior to a system calculated 
approximately when compared in compliance with the 
code requirements; 
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• results of static and dynamic analyses need to be made 
rougher and interpreted specifically to comply with terms 
of the design codes; 

• concepts operated by the design codes need to be 
introduced into finite-element analysis software. For 
example, a beam or a column comprising certain groups of 
finite elements must possess certain properties; 

• analysis results need to be specially processed to obtain 
some properties of a structural object that cannot be 
described in FEM terms, such as the tilt of a building or the 
axis of elastic centers. 

It is not only software developers who face the said 
problems. Computer mechanics experts have to deal with them, 
too, because the problems require specific methods to be 
developed for their solution. We are presenting only one 
example here for the purpose of illustration — the issue of a 
potential non-convexity of the load-bearing ability area of a 
structure’s elements, in the case this ability must comply with 
all design regulations (strength, stability, rigidity). Let’s 
consider a compressed and bent element of a steel structure and 
determine its load-bearing ability area. This area is shown in 
Fig. 9 for a steel bar with its design strength Ry = 2050 kg/cm2 
and its effective length 600 cm in both principal planes. 

The boundary of the load-bearing ability at the segments 
AB and AH is defined by the condition of sufficient strength 
under the combined effect of the tension and bending, at the BC 
and GH segments it is defined by the stability of the plane 
bending, and at the CD and GF segments (as well as at DEF) by 
the stability out of the moment’s plane. 

By itself, the non-convexity of the area in question may lead 
to quite a few unpleasant effects. The most apparent of the 
effects is related to the fact that traditional disadvantageous 
stress combinations estimated by engineers either do not include 
some actions or include them incompletely. In a non-convex 
area, though, it is quite possible that the disadvantageous 
combination occurs at some intermediate point. For example, if 
one variation of loads conform to the C point while another to 
the E point (in both cases the load-bearing ability is ensured), 
then we can take halves of the limit moment and force and find 
ourselves in the K point beyond the admissible area. 

There arises a problem of this type — find conditions under 
which the convex surface of points depicting all possible 
stressed states belongs to the load-bearing ability area defined 
by structural design code requirements. As far as we know, 
there has been found no satisfactory general solution of this 
problem fitting for a practical software implementation. 

9. Conclusion 

The development of finite element software for structural 
design creates lot of complex specific problems of 
computational mechanics. 

The experience of development and practical usage of 
software for structural design requires the permanent 
replenishment and analysis. The corresponding efforts should be 
supporting by scientific community. 
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