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Abstract 
 

The subject of consideration is a cylindrical oil tank in which a part of its wall has been repaired/replaced and thus its geometrical 
shape distorted due to mismatched thickness of the wall and its patches. There is presented a comparison between results of a linear 
analysis and one that allows for geometrical non-linearity. The loading parameter for the step-by-step geometrically nonlinear 
analysis is assumed to be the level of fluid in the tank. 
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1. Introduction 

Known theoretical and experimental investigations of 
cylindrical shells having imperfect geometrical shapes regard, 
most frequently, constructions with the relative thickness t/R = 
0.001 ÷ 0.005 (where t is the thickness; R is the radius) and 
relative geometrical deviations from the perfect shape ∆/t of 
some 0.05 ÷ 0.50 (∆ is the deviation from the perfect shape). 
Those investigations were intended chiefly to estimate the effect 
of the geometrical imperfections on the shells’ 
stability/buckling. For big cylindrical tanks there are also 
common values t/R = 0,001 ÷ 0,0005 and ∆/t = 5 ÷ 8.  
Deviations like these affect the general stressed state of an 
entire structure, so they must be taken into account even though 
the buckling may not be a critical issue. Particularly, there can 
be great local bending stresses that arise in areas of local shape 
deficiencies and initiate a low-cycle endurance fracture after 
1000 to 5000 emptying/filling cycles of the tank (20 to 30 
years). 

E.O. Paton Institute for Electric Welding (Ukraine) has 
developed a new technology for repairing damaged tanks with 
their walls deviated from the designed shapes. This technology 
includes an insertion of sheets, and this causes distortions of 
geometrical shapes. Immediately there arises the problem of 
estimating the effect of these geometrical distortions on the 
stress/strain distribution in the entire structure [1]. Estimations 
of this kind have been performed for some real tanks that are 
capable of storing 20000 m3 of oil or oil products. 

The calculations were performed by the SCAD software 
system [2] in a geometrically nonlinear formulation. The results 
of the analysis are discussed below. 

 

2. Finite-element model 

As the structure is symmetrical, the analysis involved only a 
quarter of it. The area of consideration comprises about one half  

of the tank’s height (levels I through VI). Along the lower 
boundary the stiff clamp conditions are assumed which give 
some reliability reserve. Along the top edge all linear 
displacements are allowed, while the slope of the guide is 
limited. These conditions are in approximate accordance  with 
reality in the middle of the wall where an annular reinforcing rib 
is installed. At the vertical edges of the fragment, boundary 
conditions defined by the symmetry of the shape are stated. 

The analysis uses a finite-element model consisting of 
rectangular and triangular shell elements. The sizes of the 
elements are 626.7 mm horizontally and 745 mm vertically in 
areas of the wall remote from the reinforced place. These sizes 
get quartered towards the reinforced area. Fig. 1 shows a view 
of the wall (here and further, actually an involute) together with 
its finite element division. 

The width of the reinforced area in the annular direction is 
assumed to be 2500 mm. The thickness of the reinforcing sheets 
and elements of the wall are based on data presented in Table 1. 
 
Table 1. Thickness of sheets 

No. of the Thickness, mm 
level Wall Reinforcement 

I 16 16 
II 15 16 
III 14 16 
IV 12 14 
V 11 12 
VI 10 12 
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Figure 1: The finite element mesh evolved (the reinforced area is marked) 

 
The analysis uses the assumption of an elastic behavior of the 
wall’s material, and these usual physical constants are adopted: 

elasticity modulus Е = 2100000 кг/cm2; 
Poisson ratio µ = 0.3. 

3. Geometrical shape 

The object of consideration is a tank with distortions of its 
geometrical shape that conform to a real construction of the wall 

of a tank having the capacity of 20000 m3 which was actually 
measured. 

The distorted shape of the tank is defined by maximum 
deviations measured at points in the middle of the reinforcing 
sheets at the level of horizontal joints. Results of the 
measurements are presented in Table 2. 

 
Table 2. Geometrical distortions of the shape 

  
 Deviations, mm 

 
Level, mm 

Area 1 Area 2 

 0 -5 -9 

 1490 -41 -22 

 2980 -40 -31 

 4470 -35 -23 

 5960 -27 18 

 7450 -10 14 

 8940 -20 -4 

 10430 -23 -10 

 11920 -31 22 

 13410 -33 -5 

 14900 -18 -9 

 16390 12 -15 

 

 Figure 2: Deviations measured and smoothed 
 17880 2 -4 
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Seeing that the measurement caused certain errors to appear, 

it was decided to smooth them by solving the best root-mean-
square approximation problem with the data of Table 2. There 
were obtained the following relationships between the deviation 
and the relative height of the checkpoint above the tank’s 
bottom. 

For area 1: ∆(x) = 4185,36x5 − 10507,9x4 + 8657,32x3 −       
−2471,16x2 + 128,509x − 9,11538. 
For area 2: ∆(x)  = 91,6502x5 + 124,144x4 − 895,411x3 + 
+1019,66x2 − 356,115x − 5,465035. 

Here х is the level mark of the point in mm divided by 10000. 
Fig. 2 presents plots of these equations together with the 

measurement results. Here circles and the dash line correspond 
to the area 1 while the squares and the solid line to the area 2. 

It was assumed that the actual surface deviated from the 
perfect cylinder with the radius 19950 mm could be described 
by this equation in the cylindrical coordinate system:  

ρ = 19950 + ∆(x) sin2[πs/L], 
where s is the arc coordinate, L = 2500 mm is the arc length of 
the distortion area. In other words, the deviations are 
represented as a product of a function of the height by a 
function of the arc length. 

Fig. 3 presents a scheme of the same surface in the area 2 
distorted along the radial coordinate pretty much. 

 
 

 
 

 

Figure 3: A schematic view of the surface in the distorted areas:  
(а) photo; (b) an evolvent of the distorted surface 

 
4. Effect of mismatched thickness  

Because the thickness of the wall and that of the reinforcing 
sheets are different (see Table 1), the axisymmetric shape of 
deformation has to be distorted. In order to have an idea of the 
respective distortion of the stress/strain distribution in the wall, 
we performed an auxiliary analysis of the tank with its wall of 
the assumed (designed) cylindrical shape but its thickness being 
the same as in the reinforced construction. The loading pattern 
was the same as in the cases of interest: 16 vertical meters of 
water filling the tank. The analysis of the results showed that the 
mismatched thickness introduced a  distortion of about 20% into 
the annular stress, and in places where sheets of different 

thickness contacted there were a narrow strip with bending 
moments caused by the edge effect. 

5. Effect of geometrical distortions 

In order to estimate the geometrical distortion, first we 
performed a geometrically linear analysis. It appeared that the 
displacements were too great (Fig.4a). The annular stress in the 
wall (Fig.4b) was distributed pretty smoothly over the surface of 
the wall, while noticeable deviations could be seen only along a 
narrow strip near the thickness mismatch between 1st and 2nd 
levels and in the vicinity of the geometrical distortions. 
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Figure 4:. Results of the linear analysis in the area 1: (a) displacements; (b) annular stresses 
 

Big displacements evidence that the analysis must be 
performed in the geometrically nonlinear formulation. Such 
analysis was performed, and Fig. 5 presents its results. 

Taking into account the geometrical non-linearity decreased 
the displacements by an order of magnitude comparing to those 
yielded by the linear analysis, and these values correspond to 
those observed on the object. This effect of a “nonlinear 

reinforcement” is based on the action of the annular tension 
stress, therefore it appears more clearly at the bottom of the wall 
where the said stress is big. Also, one should be aware that the 
stress distribution changes less than the displacements do as the 
analyst changes from a linear formulation of his problem to a 
nonlinear one. 

 

Figure 5: Results of a nonlinear analysis in the area 1: (a) displacements; (b) annular stresses 
 
 

6. On the nonlinear computation 

The nonlinear problem was solved stepwise with iteration 
refinements by Newton – Rufson method at each step. The 
accuracy check used the displacement vector’s norm, the 
accuracy requirement was 10-4, and the maximal allowed 
number of iterations per one step was 20. The linearized 
problem was solved by a multi-front solver [3] which reduced 
the computation effort five times or so comparing to Gaussian 
solvers. 

The computation was performed with variable mesh density 
parameters and at different numbers of steps in order to evaluate 
the accuracy of the finite-element model and the behavior of the 
step-by-step process. 

One of effective techniques for general estimation of the 
nonlinear solution involves a loading/unloading repeated cycle 
which was actually used in this analysis. When using this 

technique, first we increase the load intensity parameter λ from 
zero to 1, and then decrease it back from one to zero. We can 
estimate the accumulation of errors in a computational process 
by comparing the initial and final states of the system seeing 
that our mechanical model is conservative. 

Notice that in the course of unloading the estimate of the 
nonlinear algebraic system solution accuracy 

F(Z) = λP, (1) 

usually constructed as a ratio of the divergence vector’s norm to 
the load vector’s norm 

ε = || F(Z) − F(Z*)|| / ||λP|| (2) 

becomes incorrect as λ → 0. One should use the estimate (2) at 
λ = 1, i.e. divide the error by the norm of the full load rather 
than the load of a particular step.  
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For this problem, the step-by-step process was organized in 
two ways: 

(a) as a process of increasing the external load, the 
parameter being the fluid’s density (λ1 = γ);  

(b) as a process of increasing the fluid’s level and the level 
being the load parameter (λ2 = h).  

Fig. 6 presents plots of displacements as they change in two 
characteristic points (with a noticeably nonlinear or almost 

linear behavior). It is natural that the final results are the same, 
but the behavior of the system in the course of its loading is 
essentially different in these two cases. Notice that the second 
way of using the load parameter sped up the process and 
enabled us to achieve the proper result in half of the number of 
steps. 

 

 
Figure 6: Plots of displacements: (a) parameter λ1 = γ; (b) parameter λ2 = h 

Also, it turned out that some geometrical deviations related 
to deflections inward the tank behave differently in these two 
cases of the load variation. Some of them remain as the load’s 
intensity is gradually increasing at a constant fluid level, but 

they disappear as the level starts increasing. Actually, it is the 
second method of the load variation that happens in reality, 
therefore we decided to use this one. 

 
 

Figure 7: Equivalent stresses in the area 1: (a)  in the interior layer; (b) in the exterior layer 
 
Final results of the analysis include values of the equivalent 

stresses (we used the strain energy theory of failure) at the 
exterior and interior surfaces of the tank (Fig. 7). The analysis 
of these has shown that it is acceptable not to make extra efforts 
of repairing the geometrical shape faults and allow to fill the 
tank up to the designed level. 
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